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AbslracL W investigate the validity of Fouriets law in a two-dimensional monatomic 
lbda lattice using the molecular dynamics method. 'he lemperature pmfiles in the lattice 
ahibit an aponential behaviour with lattice posilion. nie temperature dependence 
of thermal conductivity is necessarily derived bom the spatial variation of he local 
temperature, and found lo te invelrely proportional lo the l o a 1  temperature. The 
validity of Fourier's law is mnfirmed by excluding he nondiRusive heat Row from the 
toIa1 heal currents. 

1. Introduction 

Heat transport in an electrically insulating crystal or amorphous solid is attributed 
to the lattice vibrations and is described in terms of the phenomenological theory 
referred to as Fourier's law. The first attempt to explain Fourier's law was performed 
by Peierls in 1929 [l]. He attributed the energy sharing among the normal vibrational 
modes to lattice anharmonicity and derived the law, applying the concepts for gas 
dynamics to phonons. In 1955, Fermi ef a1 [Z] examined the energy-sharing mechanism 
in an anharmonic lattice by means of numerical simulations and exhibited a lack of 
equipartition of energy among the degrees of freedom, which cast some doubt on 
the hypothesis of Peierls for irreversibility of phonon systems. After this work a 
number of computer simulations on heat transport have been performed to verify the 
phenomenological theory from first principles. However, most attempts have failed to 
present a normal thermal conductivity [3-111 except for some special cases, such as 
the ding-a-ling model [12], since the resultant magnitude of the thermal conductivity 
was dependent on system size. 

Mokross and Biittner (131 suggested that one-dimensional diatomic Ibda lattices 
would present a normal thermal conductivity. Jackson and Mistriotis [14] examined 
the size dependence of the thermal conductivity of similar lattices, of larger size than 
those of Mokross and Buttner, and reported a size-independent thermal conductivity 
in onedimensional diatomic 'Ibda lattices. Although their work seemed to present 
a successful explanation for normal thermal conductivity, some problems had been 
found in their work which will be considered in the following. 

In the numerical simulations on heat transport, the resultant temperature profiles 
have often appeared not to he linear hut to he concave [10,13,14]. However, the 

t Present address: Advanced Software Development, AsiaPacific Products, APTO, IBM Japan, Lld, 
Shimotsumma 1623-14, Yamato 242, Japan. 
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temperature profiles have been blindly believed to he linear and approximated with 
straight lines to estimate the thermal conductivity. Another roublesome phenomenon, 
overlooked in the numerical simulations so far, is that the energy is carried not only 
through the diffusive process hut also through the non-diffusive one [lo, 141, which 
would lead to the undesirable non-local property of heat transport. The present 
authors [15] re-examined the heat transport in the one- and two-dimensional diatomic 
lbda lattices, paying special attention to the non-linear variation of local temperature 
and to the non-diffusive heat flow, which should he excluded for an estimation 
of normal thermal conductivity. We found, for both cases, that the temperature 
profiles show an exponential behaviour with respect to lattice position. The curved 
temperature profiles require a temperature-dependent thermal conductivity, so that 
the heat flow becomes independent of lattice position in the steady non-equilibrium 
states. Thus we made it clear that the deviation of the temperature profiles from 
a straight line is closely related to the temperature dependence of the thermal 
conductivity. We estimated the magnitude of the thermal conductivity by excluding the 
contribution of the non-diffusive heat flow to the heat transport and obtained a size- 
independent thermal conductivity which is inversely proportional to local temperature. 
This is just the evidence for Fourier’s law. We have also investigated the heat transport 
in onedimensional quasi-periodic ?bda lattices [16,17], using the same molecular 
dynamics method, and confirmed the evidence for normal thermal conductivity. We 
found a similar temperature dependence of thermal conductivity to that of the one- 
dimensional diatomic Tbda lattices. 

We have verified the validity of Fourier’s law for some non-linear lattices whose 
mass distribution is diatomic or quasi-periodic. However, Fourier’s law is known to 
be actually satisfied for any real material, even in monatomic crystals (for a review 
see. [IS]). We are interested in whether Fourier’s law is satisfied or not with only 
lattice anharmonicity. This is precisely the motivation for the present work. If we 
could exhibit the validity of Fourier’s law in monatomic systems, we could study fairly 
the heat transport in more complex systems such as amorphous solids by introducing 
some kind of inhomogeneity to the system. In this paper, we apply the molecular 
dynamics method used for the previous systems [15-171 to investigate the validity of 
Fourier’s law in simple monatomic non-linear square (two-dimensional) lattices with 
nearest-neighbour interactions. 

We mention here another method to investigate the thermal conductivity. In some 
numerical simulations on heat transport [lo, 191, the Green-Kubo integral [20,21] is 
used to estimate the thermal conductivity. The Green-Kubo integral relates the 
thermal conductivity to the heat current autocorrelation function in equilibrium. As 
the alidity of Fourier’s law is postulated in order to derive the Green-Kubo integral, 
we cannot use the Green-Kubo integral to investigate the existence of Fourier’s law. 
Generally speaking, the applicability of the Green-Kubo integral to the numerical 
simulations of lattice heat transport is not justified unquestioningly since there are 
few systems for which Fourier’s law has been verified from first principles. 

The layout of this paper is as follows. In section 2 we give a brief description 
of the two-dimensional monatomic non-linear lattices to be studied here. Details 
of numerical simulations are also described in this section. We search for the 
temperature region where the system shom irreversible behaviour. The resultant 
temperature profiles are analysed and fitted with an empirical formula of exponential 
type in section 3. In section 4 we derive the temperature dependence of thermal 
conductivity based on empirical temperature profiles. Considering that the heat flow 
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consists of diffusive and non-diffusive parts, we examine the validity of Fourier's law. 
The last section will be devoted to a summary and discussions. 

2. 'ho-dimensional Toda lattiees and numerical simulations 

The lattice to be studied here is a two-dimensional square lattice. All masses are 
equal to mo and the nearest-neighbour atoms are linked with 'Ibda potentials [22]. 
In this paper, we hereafter refer to this two-dimensional non-linear square lattice as 
a two-dimensional 'Ibda lattice. As is well known, a onedimensional Toda lattice is 
integrable and has solitons or cnoidal waves as the non-linear normal modes [22]. On 
the other hand, such non-linear normal modes are not found in the two-dimensional 
Toda lattice. Therefore we may expect a finite temperature gradient or a finite thermal 
conductivity of the lattices in the non-equilibrium states due to the  non-integrability 
of the lattice. 

A direct connection from the specimen lattice to the heat baths is known to 
cause a large deformation of temperature profile near the interfaces between the 
lattice and heat reservoirs. This is because of the thermal boundary resistance 
due to large mismatch of acoustic impedance between them [a], and it is hard 
to specify temperature profiles correctly which reflect the temperature dependence of 
the thermal conductivity. In order to avoid this difficulty, we put Mikhailov's lattices 
[24]t as buffer areas between the relevant lattice and the heat baths. Mikhailov's 
lattice is another kind of twodimensional non-linear lattice which can be constructed 
by replacing M a  potentials along the y-direction by harmonic ones in the two- 
dimensional 'bda  lattice. One of the important features of Mikhailov's lattice 
is that the lattice is integrable and has exact solitary-wave solutions as the non- 
linear normal modes [24]. This means that no finite temperature gradients occur 
in Mikhailov's lattice, since the energy can propagate ballistically even in the non- 
equilibrium states. Thus, the two-dimensional 'Ibda lattice is sandwiched by regions of 
definite temperature. In other words, we can say that Mikhailov's lattices as a whole 
act as heat baths. However, since there is no longer a mismatch in acoustic impedance 
between the specimen lattice and Mikhailov's one, the temperature profiles of the 
two-dimensional 'Ibda lattices might be easily affected near the interfaces between 
the different lattices. In order to prevent temperature profiles near the interfaces 
from being deformed, we insert heavy atoms {mI) at the interfaces and recover the 
thermal boundary resistance a little. 

Figure 1 shows the experimental situation for the numerical simulations. As is 
seen in this figure, N ,  and N ,  denote the sizes of the specimen lattice in the 2- 
and ydirections, and each buffer area is of atomic length NB, including the interface 
atoms. Thus our system has a total atomic length N (= N ,  + 2 N B ) .  We set N B  = 10 
and N ,  = 10 throughout the present experiments due to the restriction of computer 
capacity. The length of specimen lattice N ,  varies in the range from 200 to 400. 

For simplicity, we assume the atomic displacement to be scalar. The total energy 
for this system including the buffer areas whose dimensions are N x N ,  is written as 

t Mikhailov's lattice is often called the hvodimensional Tbda laltice awing to ils integrability in some of 
the Literature. However, in this paper we refer to the two-dimensional non-linear lattice linked by Tbda 
potentials khveen nearest-neighbour atoms as the two-dimensionnl Toda !atlice. 
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Figure 1. The model and experimental situation for the two-dimensional lattice. Open 
circles denote the atoms of mass >no. The full circles denote the atoms of mass nq at 
the interfaces. All panicles are connected to the lbda potenrials along the zdireetion. 
The atomic mnneCtion along the ydirection is also a Tda potential in the specimen 
!atice and an harmonic one in the buffer areas, n l e  periodic boundary condition is used 
for displacement along the ydirection. The bttice is healed by the elastic collisions of 
atoms between the lattice ends and the heat I E x N O i R ,  whose temperatures are OH and 
eL, lespeclively. 

+ interaction with heat reservoirs (1) 

where p i j  and ui j  are the momentum and displacement of the atom at the ( i , j )  site, 
respectively. Masses {mi) for the two-dimensional Tbda lattice and Mikhailov’s one 
are set to be mo and those of the interface atoms to be m,. In the present simulations, 
we set mu = 1 and mI = 3. The potential function V ( r )  which connects all atoms 
along the rdirection is a ’bda potential [22], such that 

V ( r )  = (b /a )exp(-ar )+  b r -  b / a .  (2) 

The other potential function W ( r ) ,  which connects the atoms along the perpendicular 
direction, is also a Toda potential V ( r )  for the two-dimensional Tbda lattice and is 
an harmonic potential U ( T )  far Mikhailov’s lattice, given by 

U ( r )  = ( c / z ) r2 .  (3) 

Here a, b and c are potential parameters which are all set to unity in this paper. 
The periodic boundary condition is used for the displacement of the end column 
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atoms, i.e. ui,  = u ~ , , , + ~ .  The equation of motion is integrated numerically using the 
Runge-Kutta-Gill method. 

The energy exchange between the end atoms and the heat baths is supposed to 
occur through the elastic collisions of the end atoms with gas particles in the heat 
baths. The gas particles are also assumed to have a Maxwell distribution in velocity 
at the prescribed heat-bath temperatures, 0, and 0,. respectively. 

At very low temperatures, the anharmonicity of the two-dimensional Tbda lattices 
is extremely reduced and the dynamical behaviour of the lattices becomes reversible. 
With an increase in temperature the anharmonicity is enhanced, and above some 
critical temperature the dynamical behaviour changes drastically, to show stochastic 
or irreversible behaviour. Normal thermal conductivity is anticipated above such a 
critical temperature. 

The divergence of trajectories starting from two points close in phase space has 
teen investigated to check the establishment of thermal equilibrium states. The 
method has been improved for non-equilibrium states [I4171 since the dynamical 
behaviour must become stochastic within a short time interval, which is characteristic 
of the relevant system, as noted by Jackon and Mistriotis 1141. We will take a sound 
transit time interval T, for a short time interval. 

The type of divergence of trajectories is judged by the mlue of the quantity p( T,) 
defined by 

dT,) = l T ' d t  [Id(l) - A(q,,pr,T,)exP(~(9r,Pr,T,)t)IZ 

- Id(t) - PT. Ts)t - C(qr, pr ,  T)I2I (4) 

Here d ( t )  is the distance between two trajectories a and /3 starting in the 
neighbourhood of a point ( qr ,  pr) in the phase space, given by 

The distance d( l )  is approximated for 0 < t < T, by a function of the 
form A ( q r , y , , T , ) e x p [ ~ ( q , , p r , T , ) t ]  and also by a linear function of the form 
B(q,.,p,,T,)t + C(qr ,pr ,Ts)  using the least-squares method. 91 and p p  denote 
the position and momentum of the ith atom on the trajectory a, where the index i 
is abbreviated. Therefore, negative p denotes that the divergence of trajectories is 
close to exponential behaviour and, namely, that irreversibility can be expected. We 
calculated the local rate of divergence 100 times at each value of energy per atom. 
The test was performed numerically and the ratio of the number of the exponential 
development M ,  to the total trials M was obtained for the energy per atom E / N .  

Figure 2 exhibits the resultant probability that the system exhibits a stochastic 
behaviour versus E / N  for the two-dimensional 'Ibda lattice with N ,  = 125 and 
N y  = 10 atoms, without the buffer areas. The sound transit time is taken as T, = 96 
from numerical experiments on the pulse propagation. The dynamical behaviour 
becomes stochastic at least at E / N  = 3.5. As the critical energy per atom is reduced 
with system size and the e n e r a  per atom is almost equivalent to the temperature 
of the system, normal thermal conductivity is expected in the region T > 3.5 for 
N ,  2 200. 
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Figure 3. lkmperature pmfiles for the lwo-dimensional monatomic Toda lattice with 
N, = 3W and N, = 10 atoms. The temperature profiles for N, = 200 and N, = IO, 
and N ,  = 400 and N, = 10 are similar to this figure. 

3. Temperature profiles 

We define the local temperature as twice the time average of the local kinetic energy. 
The temperature profiles along the z-direction of the lattice are obtained by averaging 
the local temperature over the lattice width 
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Here the angular brackets denote the time average. Figure 3 exhibits the temperature 
profiles of the two-dimensional lbda lattice with N ,  = 300. The local temperature 
decreases exponentially with lattice positions. We also have similar temperature 
profiles for N, = 200 and 400. Thus we can approximate the temperature profiles 
with an exponential function of the form 

=IN= 
T ( I )  = TH (2) (7) 

where TH and TL are not the temperatures of the heat reservoirs but those at the 
ends of the specimen lattice, and I measures the distance from the interface between 
the buffer area and the specimen lattice. Here we use the notation z instead of the 
subscript i, for convenience. The magnitudes of TH and TL are estimated by the 
least-squares method. In terms of the empirical formula for the temperature profile 
(7), the temperature gradient yields 

dT/dx  = -(l/N,,)Iog(TH/TL)T. (8) 

4. Normal heat currents and thermal cnnductivity 

The heat current J ,  along the wlirection per width in the steady non-equilibrium 
state can be given by the following equation [lS]: 

where Qwj is the energy exchanged per unit time with heat reservoirs of high 
temperature. We consider that the heat current J ,  consists of the normal heat 
current JN, due to the local temperature gradients, and the ballistic or non-diffusive 
part JB such that 

J ,  = J ,  + J, .  (10) 

The normal heat current JN is expected to obey the following Fourier’s law 

JN = -xdT/dx .  (11) 

We assume here that the ballistic energy flow depends on the temperature difference 
of the buffer areas, and on the system size, since the buffer areas act as effective heat 
baths. The temperatures of the buffer areas TB,H and TB,L are slightly larger and 
smaller than TH and TL, respectively, because of the thermal boundary resistance. It 
should be noted here that the hallistic heat flow may not appear in real measurements 
of thermal conductivity since the temperature difference between the system ends is 
set to be quite small, in contrast to numerical experiments. 

Substituting equations (8) and (11) into (10) yields 

J ,  = x( l /Nz)b%TH/TL)T+  JB(TB,H-TB,L?NZ) .  (12) 
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200 2-D Tcda lattices 

0 1  
‘ 0  5 IO I S  

TBH -TBL 

Flgure 4 me heat cumnt per unit length J,N,/ log(Ti/T~) vepsus the Cemperature 
diiierenoe of the buffer areas TB,H - TB,L. Open circles, squares and tliangles denote 
the data for the lattices, with N ,  = 200, 300 and 400, respectively. The broken a w e  is 
drawn using the least-squares method. to exhibit the extrapolation of the data to zero 
temperature difference. The extrapolated magnitude of < h o m e s  78.0. 

Equation (12) requires that the thermal conductivity is proportional to the inverse of 
the local temperature, since the heat currents J ,  and JB do not depend on the local 
temperature. Thus we can write the thermal conductivity as follows: 

K = E/T (13) 

where < is a constant. The coefficient E must be independent of system size for the 
validity of Fourier’s law since the thermal conductivity is an intensive quantity. In 
order to estimate E ,  and to examine the size dependence from the measurements, we 
have to exclude the contribution of the ballistic heat current from equation (12). If we 
could take the limit of the temperature difference to zero while keeping log(TH/TL) 

below the critical temperature are not available for an estimation of 6 because of 
the lack of irreversibility. Instead, utilizing the difference in temperature dependence 
between the heat currents J ,  and JB, we extrapolate from the experimental data 
in the high-temperature regions. Substituting equation (13) into (12) yields 

* .  
tl1111e, we wuuiJ iiutriii t k  fi~iizii: k i t  ~ ~ : : ~ r i t  iri %C !i~.-it. EsY:~~:, ~Y;&Z?P~. 

I 

J z N , l I O g ( T ~ I T ~ )  = € +  JB(TB,H - r B , L , N , ) N , / l O g ( T H / T L ) .  (14) 

We plot J , N , / l o g ( T , / T , )  versus temperature difference, TB,H - TB,L, for the 
two-dimensional Ibda lattices with N, = 200, 300 and 400 h figure 4. The 
magnitude of the left-hand side of equation (14) decreases drastically with the 
reduction of temperature difference and seems to become a positive and finite 
value at zero temperature difference. There is no difference in both the magnitude 
and its dependence on the temperature difference TB,” - T B , L  for all system sizes 
within numerical error. Therefore, we can obtain a unique value for the coefficient 

(= 78.0) for two-dimensional ?bda lattices, independent of the system size. This 
shows clear evidence for Fourier’s law in the two-dimensional monatomic ?bda lattice. 
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5. Summary and discussions 

In this paper we examined heat transport in two-dimensional monatomic Toda lattices, 
to study the validity of Fourier's law by means of molecular dynamics. It has been 
shown that the temperature profiles along the r-direction exhibit not a linear but 
an exponential distribution independently of the system length. The deviation of 
the temperature profiles from a straight line requires the temperaturedependent 
thermal conductivity to maintain steady non-equilibrium states. We have derived the 
temperature dependence of the thermal conductivity, inversely proportional to the 
local temperature, necessarily from the exponential temperature profiles. In order to 
estimate the coefficient E of thermal conductivity, we have carefully eliminated the 
contribution of the non-diffusive heat flow to the total heat flow and determined the 
magnitude of E hy extrapolating the experimental data for some system sizes in several 
temperature regions. The resultant thermal conductivity is inversely proportional to 
the local temperature and independent of the system length. The results give evidence 
in favour of the existence of Fburier's law in twodimensional monatomic 'bda lattices. 

A remarkable result of this paper is the confirmation of the mlidity of Fourier's 
law only due to lattice anharmonicity, which offers a basic system for the study of 
thermal properties in more complex systems. As has been clarified so far, amorphous 
solids exhibit anomalous thermal conductivity behaviour (for a review see 1251). There 
have been some theoretical ideas, e.g. quasi-loealized states 1261, fractons (271, etc, 
to explain the plateau of thermal conductivity and the behaviour above the plateau 
region. It is not hard to introduce some structural inhomogeneities corresponding to 
additional mechanisms to the present system. We suppose that the present molecular 
dynamics method enables us to observe directly the temperature dependence of 
thermal conductivity from curved temperature profiles. 

We would like to emphasize again here that the deviation of the temperature 
profiles from a straight line gives important information on the temperature 
dependence of thermal conductivity and should be always taken into account for 
the study of heat transport. 
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